Progress in Cerebral Embolic Protection

The Search for Meaningful Measures of Clincial Efficacy: NeuroARC and Beyond

Alexandra Lansky, MD
Professor of Medicine, Section of Cardiology
Yale School of Medicine
Chair Interventional Research, Barts Heart Center,
Queen Mary University of London

Potential conflicts of interest

Speaker's name: Alexandra Lansky

☑ I have the following potential conflicts of interest to report:

Grants/research support: Keystone Heart

Honoraria: Keystone Heart

Cerebral Protection: A Legacy of Failed Trials

Trial design considerations

- 1. Variation in stroke definitions
 - VARC
 - ASA/AHA
 - Severe stroke vs all stroke
 - Timing of ascertainment
- 2. Uncertainty in DW MRI Endpoints
 - Frequency (CTSN) vs Volumes (Sentinel)
 - Variability of the measure
 - Clinical relevance

Device performance considerations

- Is the device effective?
- Is the device safe?

TriGuard Pooled analysis: Variability in Measures of Neurologic Injury

Incidence of Neurlogic Injury Depends on Definition

Proposed Standardized Neurologic Endpoints in Cardiovascular Clinical Trials [NeuroARC]

Framework on how to <u>assess</u>, <u>measure</u> and <u>classify</u> neurologic endpoints associated with cardiovascular procedures

International Multi Stakeholder Consensus

Interventional/Structural/ CT Surgery	Neurology/Neuroradiology/ Neuropsychology/NINDS	FDA/ARC/Pathology
Andreas Baumbach	Kevin Abrams	FDA
John Forrest	Michel Bilello	Andrew Farb
David Holmes	Adam Brickman	Nicole Ibrahim
Susheel Kodali	Jeffrey Browndyke	John Laschinger
Alexandra Lansky	Karen Furie	Carlos Pena
Axel Linke	David Greer	Bram Zuckerman
Raj Makkar	Daryl Gress	Academic Research Consortium (ARC)
Jeffrey Moses	Ronald Lazar	Donald Cutlip
Cody Pietras	Steven Messé	Gerrit-Anne van Es
Jeffrey Popma	Claudia Moy	Mitch Krucoff
Bernard Prendergast	Nils Petersen	Roxana Mehran
Joachim Schofer	Ola Selnes	Pathology and Regulatory
Arie P. Kappetein	Michael Dwyer	Semih Oktay
Michael Mack	Szilard Voros	Renu Virmani
	Bart van der Worp	

NeuroARC applies to all CV trials

Neurologic evaluation and endpoints should be tailored to the procedure/device category

CATEGORY I

Primary Procedural
Safety Measure

Devices with inherent iatrogenic

 Surgical cardiac procedures (valve replacement, CABG, dissection, aneurysm repair)

embolic risk

Adjunctive pharmacology

CATEGORY II

Primary Procedural
Efficacy Measure

Devices designed to prevent iatrogenic or spontaneous acute neurologic injury

- Neuroprotection device
- Cerebral temperature management devices

CATEGORY III

<u>Primary Procedural Safety, Long-term</u> <u>Efficacy Measure</u>

Devices with inherent iatrogenic embolic risk and designed for prevention of spontaneous long-term risk

- Atrial Fibrillation Ablation
- PFO or LAA closure devices

NeuroARC

Definitions and
Classification
Relevant to
Patients,
Comprehensive,
Practical

Type 1: Overt CNS Injury (Acutely Symptomatic)						
Type 1a	Ischemic Stroke	Focal or multi-focal vascular territory Symptoms ≥24 hours or until death or Symptoms <24 hours with neuroimaging confirmation				
Subtype 1aH: Ischemic Stroke with Hemorrhagic conversion		Class A: Petechial Hemorrhage Class B: Confluent Hemorrhage (with space occupying effect)				
Type 1.b	Intracerebral Hemorrhage	Symptoms (focal or global) caused by an intraparenchymal or intraventricular bleed				
Type 1.c	Subarachnoid Hemorrhage	Symptoms (focal or global) caused by a subarachnoid bleed				
Type 1.d	Stroke, not otherwise specified	Symptoms ≥24 hours or until death, without imaging				
Type 1.e	Hypoxic-Ischemic Injury	Global neurologic symptoms due to diffuse brain injury attributable to hypotension and/or hypoxia				
Type 2: Covert CNS Injury (Acutely Asymptomatic brain injury detected by Neurolmaging)						
Type 2.a	Covert CNS Infarction	Acutely asymptomatic focal or multi-focal ischemia, based on neuroimaging				
Subtype 2aH: Ischemic Stroke with Hemorrhagic conversion		Class A: Petechial Hemorrhage Class B: Confluent Hemorrhage (with space occupying effect)				
Type 2.b	Covert Cerebral Hemorrhage	Neuroimaging or Acutely asymptomatic CNS hemorrhage on neuroimaging that is not caused by trauma				
Type 3: Neurologic Dysfunction without CNS Injury (Acutely Symptomatic)						
Туре 3.а	Transient Ischemic Attack (TIA)	Symptoms <24 hours with no evidence of acute infarction by neuroimaging				
Type 3.b	Delirium without CNS injury	Transient non-focal (global) neurologic signs or symptoms (variable duration) without evidence of cell death by pathology or neuroimaging				

Lansky A, Messe S, Baumbach A et al.; JACC 2017 and EHJ 2017

CLASSIFICATION

APPLICATION AND ASSESSMENT

NeuroARC Definitions and Classification Consistent with Historical Definitions

COMPOSITES				
CNS Infarction (overt and covert) (ASA/AHA definition*)	Any brain, spinal cord, or retinal infarction based on imaging, pathology, or clinical symptoms fitting a vascular territory and persisting for ≥24 hours; (includes Types 1a, 1.a.H, 1d, 1e, 2a, 2.a.H)			
CNS Hemorrhage (overt and covert)	Any brain, spinal cord, or retinal hemorrhage based on imaging or pathology, not caused by trauma; (includes Type 1.c, 2.b)			
VARC 2 Stroke**	All Type 1 overt stroke			

NeuroARC Stroke Severity and Disability: Clinically Relevant

CLASSIFICATION OF ACUTE SEVERITY, RECOVERY, AND LONG TERM DISABILITY				
Acute Severity	Mild neurologic dysfunction: NIHSS 0-5 Moderate neurologic dysfunction: NIHSS 6-14 Severe neurologic dysfunction: NIHSS ≥15			
Long-Term Stroke Disability	Fatal Stroke: Cause of death is attributable to the stroke. Disabling stroke: A modified Rankin Score (mRS) ≥2 at 90 days with an increase of at least 1 point compared to the pre-stroke baseline. Non-disabling stroke: An mRS score <2 at 90 days, or ≥2 without an increase of at least 1 compared to the pre-stroke baseline. Stroke with complete recovery: An mRS score at 90 days of 0 OR a return to the patient's pre-stroke baseline mRS			

Disability is assessed in subjects with overt CNS injury (Type 1) at 90 ± 14 days after the stroke event.

NeuroARC Recommended Assessments: Clinical, Functional, Anatomic Correlations

CLINICAL EVALUATIONS Assessment: Assessment: Assessment: **Assessment:** Stroke • Stroke (<48 h, 3-5 days, and pre- Stroke Stroke Disability discharge) Disability Disability Delirium • Delirium (1, 3, 7 days) Cognition* • Cognition Cognition* Quality of Life • Quality of Life Quality of Life Cognition 30-90 Baseline Procedure Discharge 1 year 5 years days **MRI** With routine imaging: MRI MRI if neurologic symptoms MRI at 2-7 days Without routine imaging: MRI if neurologic symptoms or Recommended delirium **IMAGING EVALUATIONS Optional**

Sentinel trial: Why was the trial Underpowered? Variability in TLV: Timing is Important

⁵Haussig S, JAMA. 2016;316:592. Lansky AJ, Eur Heart J. 2015; 36:2070.; Lansky AJ, AJC 2016.

Key Factors contributing to TLV variability

- MRI timing (signal intensity attenuation)
- 3 vs 1.5 Tesla system
- Wide variation in TLV (SD is wide)
- Not a normal distribution
- TAVR system used
- Loss to FU (bias)

Is TLV the right endpoint?

- Size vs Location vs number:
- corrolates of acute symtoms vs
- Corrolates of late symtpoms

Lessons Learned: Timing of Ascertainment Sentinel Trial

30 Day Stroke Diagnosis (Analyzed ITT)

	Device Arm (n=234)	Control Arm (n=111)	p-value		
30-day Clinical Outcomes					
Any MACCE [†]	7.3%	9.9%	0.40		
Death (all-cause)	1.3%	1.8%	0.65		
Stroke	5.6%	9.1%	0.25		
Disabling	0.9%	0.9%	1.00		
Non-disabling	4.8%	8.2%	0.22		
AKI (Stage 3)	0.4%	0%	1.00		
TIA	0.4%	0%	1.00		
Sentinel Access					
Site Complications	0.4%	N/A	0.53		

Stroke Diagnosis ≤72 hours (Analyzed ITT)

^{*}Fisher Exact Test

Ulm Sentinel Study: Procedural Protection=Procedural Benefit

- 802 single center all-comer consecutive TAVR patients
- A propensity-matched analysis of 280 patients with Sentinel to 280 control patients

Predictor of Stroke at 7 days:

 No cerebral emboli protection (p=0.044) Predictor of Stroke and Death at 7 deaths:

- No cerebral emboli protection (p=0.028)
- STS score (<8 vs. <u>></u>8) (p=0.021)

Procedural vs Spontaneous Stroke Risk: Neuro ARC is more sensitive; Earlier is more Specific to the procedure

For more information Simultaneous publications in EHJ and JACC

Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials: An Academic Research Consortium Initiative

Alexandra J. Lansky; Steven R. Messé; Adam M. Brickman; Michael Dwyer; H. Bart van der Worp; Ronald M. Lazar; Cody G. Pietras; Kevin J. Abrams; Eugene McFadden; Nils H. Petersen; Jeffrey Browndyke; Bernard Prendergast; Vivian G. Ng; Donald E. Cutlip; Samir Kapadia; Mitchell W. Krucoff; Axel Linke; Claudia Scala Moy; Joachim Schofer; Gerrit-Anne van Es; Renu Virmani; Jeffrey Popma; Michael K. Parides; Susheel Kodali; Michel Bilello; Robert Zivadinov; Joseph Akar; Karen L. Furie; Daryl Gress; Szilard Voros; Jeffrey Moses; David Greer; John K. Forrest; David Holmes; Arie P. Kappetein; Michael Mack; Andreas Baumbach

Eur Heart J ehx037. DOI: https://doi.org/10.1093/eurheartj/ehx037

Published: 07 February 2017

Purchase

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2017 THE AUTHORS. PUBLISHED BY ELSEVIER INC. ON BEHALF OF THE AMERICAN
COLLEGE OF CARDIOLOGY FOUNDATION. ALL RIGHTS RESERVED.

VOL. 69, NO. 6, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2016.11.045

THE PRESENT AND FUTURE

REVIEW TOPIC OF THE WEEK

Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials

An Academic Research Consortium Initiative

Alexandra J. Lansky, MD, ^{a,b,c} Steven R. Messé, MD, ^d Adam M. Brickman, PhD, ^e Michael Dwyer, PhD, ^f H. Bart van der Worp, MD, PhD, ^g Ronald M. Lazar, PhD, ^e Cody G. Pietras, MS, ^{a,b} Kevin J. Abrams, MD, ^h Eugene McFadden, MD, ⁱ Nils H. Petersen, MD, ^j Jeffrey Browndyke, PhD, ^k Bernard Prendergast, MD, ^l Vivian G. Ng, MD, ^{a,b} Donald E. Cutlip, MD, ^m Samir Kapadia, MD, ⁿ Mitchell W. Krucoff, MD, ^o Axel Linke, MD, ^p Claudia Scala Moy, PhD, ^q Joachim Schofer, MD, ^r Gerrit-Anne van Es, PhD, ^s Renu Virmani, MD, ^t Jeffrey Popma, MD, ^u Michael K. Parides, PhD, ^u Susheel Kodali, MD, ^v Michel Bilello, MD, PhD, ^w Robert Zivadinov, MD, PhD, ^f Joseph Akar, MD, PhD, ^a Karen L. Furie, MD, MPH, ^x Daryl Gress, MD, ^y Szilard Voros, MD, ^z Jeffrey Moses, MD, ^v David Greer, MD, ^j John K. Forrest, MD, ^a David Holmes, MD, ^{aa} Arie P. Kappetein, MD, PhD, ^{bb} Michael Mack, MD, ^{cc} Andreas Baumbach, MD^c